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Interaction of a vortex ring with a piston vortex
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Recent studies on vortex ring generation, e.g. Rosenfeld et al. (1998), have highlighted
the subtle effect of generation geometry on the final properties of rings. Experimental
generation of vortex rings often involves moving a piston through a tube, resulting in
a vortex ring being generated at the tube exit. A generation geometry that has been
cited as a standard consists of the tube exit mounted flush with a wall, with the piston
stroke ending at the tube exit, Glezer (1988). We employ this geometry to investigate
the effect of the vortex that forms in front of the advancing piston (piston vortex ) on
the primary vortex ring that is formed at the tube exit. It is shown that when the
piston finishes its stroke flush with the wall, and hence forms an uninterrupted plane,
the piston vortex is convected through the primary ring and then ingested into the
primary vortex. The ingestion of the piston vortex results in an increased ring impulse
and an altered trajectory, when compared to the case when the piston motion finishes
inside the tube. As the Reynolds number of the experiments, based on the piston speed
and piston diameter, is the order of 3000, transition to turbulence is observed during
the self-induced translation phase of the ring motion. Compared to the case when
the piston is stopped inside the tube, the vortex ring which has ingested the piston
vortex transitions to turbulence at a significantly reduced distance from the orifice
exit and suggests the transition map suggested by Glezer (1988) is under question.
A secondary instability characterized by vorticity filaments with components in the
axial and radial directions, is observed forming on the piston vortex. The structure
of the instability appears to be similar to the streamwise vortex filaments that form
in the braid regions of shear layers. This instability is subsequently ingested into the
primary ring during the translation phase and may act to accelerate the growth of the
Tsai–Widnall instability. It is suggested that the origin of the instability is Görtler in
nature and the result of the unsteady wall jet nature of the boundary layer separating
on the piston face.

1. Introduction
The dynamics of vortex rings is a subject that has long fascinated researchers

in fluid dynamics. Experimental research in this field is undergoing something of a
renaissance with the use of synthetic jets, which are essentially a stream of vortex
rings, for flow control. Comprehensive reviews of the behaviour of vortex rings are
provided by Shariff & Leonard (1992) and Lim & Nickels (1995). Experimental
generation of vortex rings often involves moving a piston through a tube, resulting
in a vortex ring being generated at the tube exit. The development of a vortex ring
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typically passes through a number of stages, i.e. the formation phase, the laminar
phase, the transitional phase and, finally, the turbulent phase. Lim & Nickels (1995)
note that whether the ring passes through all four phases is dependent on the
initial conditions during the formation phase. During the formation phase, the early
transient development of a vortex has been described using similarity arguments,
Pullin (1978). Experiments and computations have had varied success in identifying
a period of self-similar behaviour, Didden (1979), Pullin & Perry (1980), Nitsche &
Krasny (1994), James & Madnia (1996), Heeg & Riley (1997). The explanations for
these results not following similarity theory have been in terms of a number of effects,
ranging from the self-induced effect to secondary vorticity and viscous entrainment
by the ring. Nitsche & Krasny (1994), using a vortex sheet model for the vortex
ring formation process, were able to identify the important factors causing departure
from similarity theory as being the self-induced effect of the ring and the absence
of a downstream component in the starting flow used for the similarity prediction.
Their computation showed the correct scaling rates for core location and strength,
but their result for the absolute strength of the ring was higher than experiments.
They attributed this to the absence of secondary vorticity in their calculations. For
short non-dimensional stroke lengths L/D, where L is the distance moved by the
piston and D is the piston diameter, the end of the formation phase is determined by
the cessation of the piston motion. It corresponds to the point of transition from a
growing vortex ring of increasing strength to where the ring begins to convect as a
result of its self-induced velocity. This point is marked by a contraction of the ring
to reach a stable diameter, see Didden (1979) and Gharib & Weigand (1998). Didden
(1979) states that the final non-dimensional diameter of the vortex is a function solely
of L/D. It is also slightly dependent on the geometry of the generator, Lim & Nickels
(1995). For fixed L/D, the vortex trajectory, and hence the final ring diameter, are
almost independent on the Reynolds number for a wide range of Reynolds number
up to 70 000, see Maxworthy (1977), the Reynolds number being based on the piston
speed and the piston diameter.

The cause of the diameter reduction is an open question. It has been suggested
(Didden 1979; Sheffield 1977), that the contraction is partly due to the effect of the
image vortex in the wall and partly due to the stopping vortex. When the piston is
brought to an abrupt halt, the primary vortex induces a separation at the corner of
the generation geometry resulting in the formation of a vortex. This stopping vortex
has been observed in a range of studies, e.g. Pullin & Perry (1980) and Weigand &
Gharib (1997). The significance of the effect of the stopping vortex on the trajectory
of the primary vortex is also an open question. For example Didden (1979) believed
its effect to be weak whereas Heeg & Riley (1997) believed its effect to be strong.
James & Madnia (1996) studied the ring produced at a nozzle and an orifice. Their
computations show a difference in the final ring diameter between the two generation
apparatus, for a given L/D. They attributed this difference to the lack of a wall effect
for the nozzle, as the stopping vortex was present in both cases. Another reason for
this difference could be the ingestion into the ring of the secondary vorticity generated
on the walls close to the orifice. Also, if the effects of image are important it would
be expected that the nature of the generation geometry would be important. The
magnitude of L/D plays an important role in determining the resulting motion. If
L/D ∼ 0.1 Sheffield (1977) showed that the effects of the vortex image and stopping
vortex are strong relative to the self-induced effect, and the potential exists for the ring
to propagate back into the tube. For L/D of the order 0.5–4.5, the ring will convect
away from the orifice under its self-induced field. The vortex will not continue to grow
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as a discrete structure for increasing L/D and eventually the flow transitions to a jet,
as mentioned by Saffman (1978). A criterion for the maximum piston displacement
in relation to the tube diameter that results in a discrete vortex has been proposed
by Gharib, Rambod & Shariff (1998) as being L/D ∼ 3.6–4.5. A physical argument
for this limiting value of L/D was suggested as follows: “the apparatus is no longer
able to deliver energy at a rate compatible with the requirement that a steady
translating vortex ring have maximum energy with respect to impulse-preserving iso-
vortical perturbations”. This result has provoked a considerable amount of interest
and resulted in a number of publications examining formation numbers. Mohseni
& Gharib (1998) equate the circulation, impulse and energy (the system invariants)
provided to the ring during generation to the properties of a particular class of
rings with finite cores described by Norbury (1973). This formulation leads to the
important result that the final ring diameter is essentially a function of the impulse,
kinetic energy and circulation delivered to the ring during the formation phase. This
suggests that the effects of image and stopping vortex are small, in as much as
generator effects act to modify these invariants and resultant vorticity distribution.

As the vortex convects away from the generating orifice, if the Reynolds number
based on piston speed and diameter exceeds 600, then the potential exists for it
to develop a wavy structure. This is a precursor to breakdown to turbulence. An
inviscid model for the appearance of azimuthal waves on the ring is described by
Widnall & Tsai (1977). The wavenumber of the most unstable waves was found
to be independent of Reynolds number. Experiments, however, show a variation in
the number of waves on a ring, e.g. Liess & Didden (1976). The reason for this
was explained by Saffman (1978) who determined that the shape of the vorticity
distribution within the core can affect the number of waves that are formed on the
ring. Studies of the behaviour of transition to turbulent rings are relatively limited.
Maxworthy (1974) observed the appearance of the Tsai–Widnall instability prior to
breakdown. Glezer (1988) notes that the transition to turbulence is preceded by the
formation of a secondary instability on the primary vortex which appears similar
in form to the secondary instability on a plane mixing layer, e.g. Bernal & Roshko
(1986). Glezer (1988) noted the existence of Kelvin–Helmholtz instabilities on the
vortex sheet connecting the vortex core to the generation orifice. He suggested that
the ingestion of these instabilities into the vortex ring may accelerate the onset of
turbulence. Glezer & Coles (1990) argue that these structures have a significant global
effect in terms of acting to entrain fluid into the ring. The photographs of Maxworthy
(1974) also show evidence of Kelvin–Helmholtz instabilities on the shear layer at
a Reynolds number, ReD , based on piston speed and piston diameter of the order
10 000. Lim (1997) conducted detailed experiments to examine the interaction of the
shear layer instability with the vortex core and concluded that ingestion of the shear
layer instability hastened the transition to turbulence.

Glezer (1988) suggested a generation geometry that consists of a tube that exits
into a plane wall, with the piston finishing flush with the wall at the end of the
generation process, forming an uninterrupted plane. This geometry has the obvious
effect of removing the singularity that exists at the orifice edge of the tube exit
when the piston motion stops (stopping vortex). This experiment raises the interesting
question as to what happens to the piston vortex that has formed in front of the
advancing piston. Experiments of Tabaczynski, Hoult & Keck (1970), Hughes &
Gerrard (1971) and Allen & Chong (2000) have shown that for a Reynolds number
greater than 400, based on piston speed and diameter, a vortex forms in front of the
piston as it advances through the cylinder. The mechanism for this vortex formation
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is the removal of the boundary layer from the cylinder wall in front of the advancing
piston. T. T. Lim (2000, private communication) and Cater, Soria & Lim (1998)
suggest from preliminary flow visualization studies that for L/D = 3 there is an
interaction between the primary ring and the piston vortex via vortex leapfrogging,
with the effect of hastening a transition to turbulence. Allen, Auvity & Smits (2000)
used dye visualization to show the interaction of the piston vortex and primary ring
for L/D = 2 and their vorticity field measurements showed the presence of the piston
vortex and its ingestion into the primary core.

Based on this short review, a number of questions need to be addressed when using
a generation geometry of the form proposed by Glezer (1988).

What is the effect of the stopping vortex? Can it be quantified using similar
generation conditions (the same non-dimensional stroke length and piston speed) but
different stopping geometry, i.e. whether the piston stops flush with the wall or inside
the tube?

What is the effect of the piston vortex on the primary ring and what is the nature
of the interaction between them?

Does the interaction change the transition process of the ring? Does the piston
vortex trigger any particular type of instability on the primary ring? Does the universal
transition map of Glezer (1988) need re-examination?

2. Experimental apparatus
A schematic of the vortex ring generator is shown in figure 1(a). The diameter of

the piston D is 50.8 mm and the lead screw drives the piston up to a maximum speed,
Up, equal to 66.3 mm s−1. The orifice plate exits into a 100× 50× 50 cm tank and the
maximum piston stroke is 4D. The piston is driven with one velocity characteristic in
these experiments, shown in figure 1(b). The average velocity of the piston during its
stroke is defined as

Ūp = 1/T

∫ T

0

Up(t) dt

where T is the duration of the piston motion. The length of the slug ejected from the
tube can be written as

L =

∫ T

0

Up(t) dt = ŪpT ,

which is also the piston stroke. If the velocity profile at the orifice exit is assumed to
be uniform spatially, then an approximation for the circulation delivered to the ring
during generation is

Γ = (1/2)

∫ T

0

U2
p (t) dt.

This model for the ring circulation is often referred to as the ‘slug’ model, see
Shariff & Leonard (1992) and Lim & Nickels (1995) for details. Glezer (1988) pointed
out that although this model cannot accurately predict the total circulation in the
flow, it can be used for comparing the relative circulation of vortex rings formed
from the same generator. Didden (1979) showed that this model for the circulation
underestimates the strength of the ring by as much as 25%. The reasons are related
to the non-uniform (spatial) nature of the velocity profile at the orifice exit during
ring production and the ingestion of secondary vorticity. A program factor, P , that
can be introduced to describe the effect of time variation of the piston velocity is
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Figure 1. (a) Schematic of the experimental apparatus and (b) piston velocity characteristic.

expressed as

P =

∫ 1

0

U2
p/Ū

2
pd(t/T ),

see Glezer (1988). Using this expression an approximation for the circulation of the
ring is

Γ = PL2/2T .

An invariant of the vortex motion is the impulse that is delivered to the fluid via
non-conservative forces. The ring impulse, expressed in terms of the resulting vorticity
field Ω, is

I = 1
2
ρ

∫
r × ΩδV ,

where (z, r) represent cylindrical coordinates. Using the ‘slug’ model, the impulse
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L/D Up mm s−1 Ūp mm s−1 P ReΓ

1.0 66.3 56.3 1.16 3317
2.0 66.3 61.8 1.06 6530
3.0 66.3 62.6 1.05 10 030
4.0 66.3 63.5 1.0 13 390

Table 1. Experimental conditions.

(a)

(b)

t*= 0.7 t*=1.1 t*=1.8

t*=5.2t*=3.3t*=2.1

bulge

Figure 2 (a, b). For caption see facing page.

delivered to the ring can be approximated as

I = ρD2π

4

∫ T

0

U2
p (t) dt = PŪpLρπD

2/4.

This again involves the assumption that the velocity profile at the tube outlet is
uniform and that the impulse of this uniform slug is all delivered to the ring. A
Reynolds number that reflects the approximate impulse of the ring, from Glezer
(1988), can be defined as

ReΓ = PŪpL/ν = 2Γ/ν.
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(c)

t*= 6.52

t*= 4.8t*=3.9

Piston vortex C

BA

Figure 2 Piston vortex and vortex ring interaction for (a) ReΓ = 3317, L/D = 1,
(b) ReΓ = 6530, L/D = 2, (c) ReΓ = 13390, L/D = 4.

Details of the generation conditions for the current experiment are listed in table 1.
A Reynolds number with length scale based on the piston diameter is ReD .

3. Visualization of the interaction of the piston vortex with the primary ring
Fluorescent dye was introduced through the piston via diametrically opposite

0.5 mm holes, placed close to the piston/cylinder junction in order to visualize the
piston vortex. Dye was also introduced through the tube at the junction of the tube
with the wall to visualize the primary vortex. Laser cross-sections were taken in a
plane through the axis of symmetry of the tube to record the interaction of the piston
vortex with the primary ring. For the first set of flow visualization experiments, L/D
was varied from 1 to 4 and the piston was stopped flush with the wall to determine
over what range of L/D an interaction occurred. The images shown in figure 2 are
of the piston finishing flush with the wall after moving a distance L/D = 1, 2 and 4
respectively. The non-dimensional time t∗ shown in figure 2 is defined as t∗ = tUp/D;
t∗ = 0 corresponds to the start of piston motion.

In all cases the piston vortex is completely ingested into the primary ring. The
flow visualization sequences in figure 2 show that the piston vortex convects rapidly
through the core of the main ring toward the forward stagnation point of the primary
ring as a result of the induction of the primary ring. When the piston vortex reaches
the forward stagnation point it is rapidly stretched around the outside of the ring, see
figure 2(b). Close to the forward stagnation point of the primary vortex some of the dye



360 J. J. Allen and B. Auvity

Piston

Piston vortex

Stokes layer
Primary vortex

(a)

(b)

Piston vortex

Primary vortex

Shear layer

Figure 3. (a) Schematic of the relationship between piston vortex and primary vortex and (b) flow
visualization experimental result for ReΓ = 6530, L/D = 2, t∗ = 2.17.

from the piston vortex appears to be drawn through the ring, forming a characteristic
‘bulge’ in front of the ring, figures 2(b) t∗ = 5.2 and 2(c) t∗ = 6.52. The photographs
of Glezer (1988, figure 9(b) and 9(c)), show a bulging near the head of the primary
ring. This feature in the current flow visualizations is a result of the ingestion of the
piston vortex. When the piston was stopped inside the tube, no bulge was present.

The images in figure 2 show a distinctly tighter spiral shape for the primary ring
core than the piston vortex. This would indicate the presence of stronger vorticity
in the primary ring core than in the piston vortex (this result is confirmed by
the particle image velocimetry (PIV) measurements presented in § 6). Detailed PIV
experiments of Allen & Chong (2000) have shown that the piston vortex circulation,
ΓPiston vortex, is of the order 22% of the ‘slug’ flow model of the primary vortex, i.e.
ΓPiston vortex/ν = 0.11ReΓ . This result is independent of D. In terms of vortex sheets,
the piston vortex and primary vortex represent separate ends of a layer of vorticity.
Connecting these two structures is the layer of vorticity (boundary layer) on the
cylinder wall. As the piston progresses through the tube this layer is both ejected
from the orifice (primary vortex) and scraped up in front of the advancing piston
(piston vortex). The relationship between the two structures is shown schematically in
figure 3(a). The connecting shear layer between the two structures is clearly evident in
the photograph in figure 3(b), which shows the pair at the instant the piston motion
has ceased and the piston vortex is being ejected from the tube.

Figure 4(a–c) shows visualizations of a section of the ring at large t∗, during the
steady translation phase. In figures 4(a) and 4(b) the characteristic bulge leading the
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Figure 4. ReΓ = 10 030, L/D = 3.0: (a) t∗ = 6.5, (b) t∗ = 7.8, (c) t∗ = 10.3. (d ) Interpretation of
vortex sheet folding.

ring can be seen along with the dye from the piston vortex being deposited into
the ring wake. In figure 4(c) the bulge in figure 4(a) has been convected around the
outside ring and a second discrete deposit of dye appears to have been made into
the wake. The suggested folding and stretching pattern of the vortex sheets required
to produce this detrainment is illustrated in figure 4(d ). The darker line marks the
vortex sheet consisting of the primary ring and shear layer, while the dotted line
indicates the evolution and distortion of the piston vortex. This pulsing of the vortex
ring would indicate that the streamline topology should show an unsteadiness and a
mechanism for detrainment.

A recent computational paper by Nitsche (2001) suggests that the shedding of
vorticity into the wake of the ring is related to the variational principle of Lord
Kelvin which, for axisymmetric rings, means that the kinetic energy is at a local
maximum, with respect to perturbations that preserve the circulation and impulse
of the ring. Computational studies, e.g. Rom-Kedar, Leonard & Wiggins (1990) and
Pozrikidis (1986), have shown how a perturbation to a vortex ring that is represented
as an idealized symmetric vorticity distribution can result in unsteady entrainment
and detrainment.
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Figure 5. Variation of the primary ring core location, RΓ and ZΓ , with respect to time for
ReΓ = 6530.

One obvious question that arises from these flow visualization results is what is the
effect of varying the location where the piston motion is terminated, and at what S/D
does the piston vortex/vortex ring interaction cease, where S is the distance from
the tube orifice that the piston ceases its motion see figure 1(a). Flow visualization
experiments for L/D = 2.0 and ReΓ = 6530 revealed that any cessation of motion of
the piston inside the tube reduces the amount of dye entrained from the piston vortex
into the primary ring. The case S/D ∼ 0.3 appeared to be the limit. When the piston
ceases its motion inside the tube for S/D > 0.3 there is no ingestion of dye from the
piston vortex.

4. Global effects
A strong interaction of the piston vortex with the primary ring may alter the

primary ring vortex trajectory, compared to the case where the piston motion is
stopped inside the tube. Vortex trajectories were therefore measured for the case of
L/D = 2 and ReΓ = 6530. The Reynolds number was selected to enable a comparison
with the data sets of Didden (1979) and Weigand & Gharib (1997). The piston was
stopped flush with the wall, or 2D inside the tube. Measurements were made of the
position of the core of the primary vortex, (ZΓ , RΓ ), as defined in figure 1, using dye
visualization.

4.1. Transient development and ring contraction

The initial phase of the ring development is defined as while the piston is in motion.
Results for the trajectory of the vortex core during this period, and shortly after the
motion ceases are shown in figures 5 and 6. The distinguishing aspect of these plots is
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Figure 6. Trajectory of primary ring core for ReΓ = 6530.

that the trajectories are essentially identical. The data set for the RΓ coordinate shows
a t3/4 growth during the development phase, see Pullin (1978). The ZΓ coordinate
shows a considerably faster growth rate, typically t3/2. These measurements of RΓ
and ZΓ are similar to those of Didden (1979) and Weigand & Gharib (1997), who
both used a tube as the exit geometry to generate vortex rings. The time at which the
piston is stopped, t∗ = 2.17, is identified by an arrows in figure 5 and 6. At this point
the trajectory of the ring undergoes a rapid reduction in diameter, before convecting
for a time with an approximately constant velocity. For a specific L/D Didden (1979)
and Weigand & Gharib (1997) found an independence of core trajectory from piston
velocity.

The interesting aspect of the data in figure 6 is the fact that the contraction is
almost identical for the case when the piston is stopped inside the tube, and hence
a stopping vortex is formed, and the case when the piston finishes flush and the
piston vortex is ingested. The final ratio of vortex diameter D0 to piston diameter
is D0/D = 1.23 which is in agreement with the empirical formulation of Auerbach
(1987). This result suggests that the effect of the stopping vortex, produced at the
orifice corner when the piston motion ceases, has little effect on the core trajectory
and hence diameter. It would also seem to indicate that the effect of the piston vortex
is weak.

The contraction of the ring diameter is also a feature of the studies where a ‘nozzle’
is used as the generation device, e.g. Didden (1979) and Weigand & Gharib (1997).
These experiments, for L/D = 2, give a final vortex diameter of Dvortex/D = 1.32.
The differing diameters for these two production devices can be also seen in the
computational data of James & Madnia (1996). Note that this difference exists for
the ring characteristics produced at a tube and orifice for the same piston speed and
stroke length. Auerbach (1991) in a series of careful measurements notes for an orifice
exit 60% of vortex fluid is tube fluid and 40% entrained fluid and for a tube exit
80% is tube fluid and 20% is entrained fluid.

The current literature on vortex rings has focused on the ring invariants, i.e. strength
Γ , impulse I and kinetic energy T , and the way these invariants are delivered by the
generation apparatus. Classification of the ring from its invariants stems from the
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work of Norbury (1973) who proposed a class of vortex rings that were characterized
by a vorticity distribution that was proportional to the distance from the axis of
symmetry, ω = Ωr. Norbury rings are classified by a parameter α that represents
the ratio of the area of the vortex to a length scale of the vortex. The range of α
from 0 to

√
2 represents rings of small cross-section to Hill’s spherical vortex. Each

α yields a unique ring and associated invariants. These rings are somewhat idealized
in that the vorticity distributions in experimental rings tend to be more Gaussian,
but provide a useful framework in which to consider the behaviour of experimentally
produced rings. The results of Norbury (1973) would seem to imply that the role of
the image system and stopping vortex is not important in affecting the final diameter
as it is defined by the invariants of production. They would also suggest that the rings
produced at an orifice and nozzle, with the same L/D and velocity characteristic, are
different as a result of how the apparatus delivers the invariants. Rosenfeld, Rambod
& Gharib (1998) for example mention that the circulation of a ring produced at
an orifice and nozzle can differ by as much as 5% and the suggested reason is a
difference in vorticity cancellation. The computations of James & Madnia (1996)
show a significant difference in the total impulse of the flow field for a ring produced
at a nozzle and orifice. Unfortunately they do not calculate the impulse of the vortex
alone for comparison.

Variations in the way the impulse is delivered to the rings for different geometries
may be explained by considering the self-similar computations of Pullin (1978). In
these two-dimensional calculations of the starting flow past a 90◦ wedge and a flat
plate a clear difference exists in the location of the vortex core, for a given strength,
and hence it can be inferred that there will be a difference in impulse. This is a direct
result of the flow geometry and system of images used for both calculations. Hence in
conclusion it is suggested that the ring contraction is not a direct result of the system
of images and stopping vortex but rather the ring relaxing to its natural state, which
is a function of its invariants. The generation geometry appears to be important in
terms of determining how these invariants are produced.

4.2. Piston vortex leapfrogging

Figure 7(a) shows the ZΓ coordinate of the ring for larger values of t∗ for L/D = 2,
ReΓ = 6530, and the two stopping geometries being considered, S/D = 0 and 2.
When the piston vortex is ingested, the velocity of the primary core slows at t∗ ∼ 4.2.
This correlates with a deceleration of the ring and occurs as the piston vortex is
being convected through the ring, as shown in figure 2(b), t∗ = 3.3. The data shown
for S/D = 2 display no such deceleration and the velocity of the ring appears to be
almost constant. To more clearly illustrate the effect of the piston vortex as it orbits
the primary ring, the mean ZΓ core location was subtracted from the data sets. The
results of this transformation are shown in figure 7(b). The mean location was based
on the linear fit to the S/D = 2 data set in figure 7(a).

These results indicate the presence of a vorticity distribution of the form sketched
in figure 8. This distribution would act initially to decelerate the primary ring while
the piston vortex accelerates through the core in a form similar to vortex leapfrogging,
e.g. Yamada & Matsui (1978). As the piston vortex is comparatively weak compared
to the primary ring, the effect of the piston vortex and hence the deceleration of the
ring is weak, while the effect of the ring on the piston vortex is strong.

The plots in figure 7(a, b) would also seem to indicate that at t∗ ∼ 10 for identical
ReΓ there is a clear difference in the convection speed. To clarify this, the time at
which the primary core reached Z/D = 7.3 for L/D = 2 and ReΓ = 6530 was
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Figure 7. (a) Vortex core trajectories for ReΓ = 6530, L/D = 2, S/D = 0, 2, and (b) vortex
core trajectories with mean core location for S/D = 2 subtracted to illustrate leapfrogging of the
S/D = 0 case.

measured, and was found to be t∗ = 15.1± 0.1 for the piston finishing flush with the
wall and t∗ = 16.4± 0.1 for the case when the piston finished 2D inside the tube. The
ring diameters were equal in both cases. Therefore the distance travelled by the rings
for a given interval is different, indicating a difference in ring strength, which is a
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Piston

Figure 8. Leapfrogging and mutual induction effects of the primary ring and the piston vortex,
resulting in a deceleration of the main ring.

direct consequence of ingestion of the piston vortex. To check this the location of the
vortex core was measured for ReΓ = 10 030, L/D = 3, and S/D = 0 and 1. The data
showed a significantly different terminal speed. The time to reach Z/D = 5.02 for the
S/D = 0 case was t∗ = 11.3 ± 0.1 and for S/D = 1, t∗ = 12.3 ± 0.1. The conclusion
that the rings have differing strengths and that a form of leapfrogging is occurring is
confirmed by the PIV measurements, § 5.

The major source of error in these measurements is not resolving the location of
the ring core, but cycle to cycle variations, caused by residual motions in the tank.
For these experiments, the tank was allowed to settle for about 30 minutes between
runs. If the settling time was not sufficient, misalignment of the rings occurred during
ingestion, producing non-axisymmetric leapfrogging.

5. Topology of piston vortex/vortex ring interaction
PIV experiments were performed to generate quantitative velocity and vorticity

information during the development phase. The data acquisition system consisted of
an argon ion laser, an externally triggered Cohu 6600-3000 series full frame transfer
video camera, 659 × 496 pixels, with 10 bit resolution, a General Scanning 6120DT
series oscillating mirror and an Epix frame grabber. Details of the PIV system
hardware and software, that are capable of producing a time difference between
image of the order 0.5 ms are contained in Allen & Smits (2001) and Allen et al.
(2000).

Figure 9 shows a sequence of streamline patterns for the case when the piston
finishes flush with the wall and inside the tube with application of a bias velocity
equal to the speed of the piston. From these streamline patterns the presence of
the piston vortex is clearly evident. The piston vortex can be seen convecting through
the primary vortex as in the dye visualizations. Vorticity fields were generated from the
velocity data sets using a global spline technique, as outlined in Spedding & Rignot
(1993). Figure 10 shows a sequence of the developing vorticity fields when the piston
finishes flush with the tube exit. Non-dimensional vorticity is defined as ω = ΩUp/D
and the vorticity contours in these plots are separated by three non-dimensional units.

Figure 10(a) shows the development of the primary ring while the piston vortex
is still located inside the cylinder and the piston is still in motion. In figure 10(b)
the piston vortex can be clearly seen emerging from the cylinder. This vorticity
distribution appears very similar in form to the dye streakline image shown in
figure 3(b). In figures 10(c) and 10(d ) the piston has stopped and the piston vortex
appears to be convecting toward the axis of symmetry and stretching along this axis
toward the stagnation point of the primary vortex. This result also agrees well with
the flow visualization that showed a bulge produced by the ingestion of the piston
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(a)

(b)

(c)

Piston vortex

Piston

Figure 9. Streamline patterns for ReΓ = 6530, L/D = 2, left column S/D = 0, right column
S/D = 2. (a) t∗ = 2.17, (b) t∗ = 2.77, (c) t∗ = 3.37.

vortex, figure 2(b). These results also appear similar to that of Fabris & Liepmann
(1997), who examined the late stages of ring development and who also comment
that although there may be some cancellation of the vorticity from the shear layers
across the axis of the ring, a significant amount of vorticity is advected through the
centre of the ring and collects in the region of the forward stagnation point, resulting
in a more complex vorticity distribution than may otherwise have been expected. The
peak level of the non-dimensional vorticity in the primary vortex is ω ∼ 50 and the
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(a) (b)

(c)
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(d)
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Piston

Piston

Figure 10. Vorticity fields for ReΓ = 6530, L/D = 2, S/D = 0: (a) t∗ = 1.9, (b) t∗ = 2.17,
(c) t∗ = 2.77, (d ) t∗ = 4.0.

level in the piston vortex is ω ∼ 13, which agrees well with the results of Weigand &
Gharib (1997) and Allen & Chong (2000). The vorticity distributions do not reveal
any significant vorticity deposition into the wake.

Quantities of interest to describe the behaviour of vortex rings are the strength
Γ =

∫ ∫
Ω(r, θ) dA and impulse I = ρπ

∫ ∫
Ω(r, θ)r2 dA. These quantities can be found

by evaluating an area integral over the vorticity fields. Figures 11(a) and 11(b) show
Γ/ν and I/(ρπD2/4U0) versus t∗ for the case where the piston finishes flush with the
wall, and when it finishes 2D inside the tube for ReΓ = 6530. They show that when
the piston finishes flush with the wall the ring has a larger impulse and strength. This
coroborates the conjecture in § 5.2 that the increased convection speed for S/D = 0
was related to the higher circulation of the primary ring. The size of the difference in
ring strength, of the order 6%, is similar to the difference in convection speed. This
difference in strength and impulse is most clearly illustrated in figure 12 which shows
the vorticity distributions at the instant the piston motion has ceased for S/D = 0
and S/D = 2. The larger integral, and hence strength and impulse, for the S/D = 0
case is clearly due to the presence of the piston vortex that can be seen being ejected
in front of the piston. The results for ring strength, for L/D = 2, are of the order
±5% of that shown in Didden (1979, figure 15). It should also be noted that the area
integral used for the calculation of impulse and strength for the case where the piston
ceases its motion inside the tube does not incorporate the stopping vortex and hence
the impulse and strength calculated are for the primary ring. With our two stopping
configurations, the small variation in impulse and strength is clearly explained as
a result of the ingestion of the piston vortex, rather than an effect of the stopping
vortex.
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Figure 11. (a) Γ/ν and (b) I/(ρπD2/4Up) versus t∗ for ReΓ = 6530 and S/D = 0, 2, L/D = 2.

6. Development of azimuthal instabilities on the piston vortex
Glezer (1988) noted the presence of an azimuthal core instability on the primary ring

that consisted of vortex tubes, alternating in sense, wrapped around the main core of
the vortex that resembled the braids that appear in shear layers, e.g. Bernal & Roshko
(1986). He also commented that these tubes are responsible for the entrainment and
detrainment of fluid to and from the vortex ring and suggested that these tubes had
their origin on the connecting shear layer between the vortex core and the orifice and
that their presence accelerates the transition to turbulence.

To determine the origin of these instabilities on the ring observed by Glezer
(1988) and commented on by Auerbach (1991), a global visualization technique was
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Piston vortex(a) (b)

Figure 12. Variation in vorticity distribution at ReΓ = 6530, t∗ = 2.17 for (a) S/D = 0,
(b) S/D = 2.
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Figure 13. Precipitate flow visualization images for ReΓ = 6530, L/D = 2: (a) t∗ = 2.17,
(b) t∗ = 2.65, (c) t∗ = 3.3, (d ) t∗ = 5.8.

employed. A metallic precipitate was created at the edge of the orifice using a loop of
tinned solder. The thickness of the solder loop was of order 0.5 mm and was located
on the wall at a distance of 1 mm from the orifice so as to not disturb the vortex
ring generation process. The solder, acting as the anode, was connected to an 80 V
power source. The primary benefit of this method is that white light could be used
to provide a three-dimensional image of the ring development. The Schmidt number
of the precipitate is of order 1000, see Taneda (1977) for details. Figure 13 shows
a sequence of results for the case when piston motion finishes flush with the wall.
Figure 13(a) shows the piston vortex and primary ring at the instant the piston motion
has stopped. Wave-like structures are seen on the outer turn of the piston vortex.
No waves are apparent on the core of the piston vortex, or on the primary ring.
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Figure 14. Laser cross-sections for ReΓ = 13 390 and L/D = 4, S/D = 0: (a) Z/D = −1.64,
t∗ = 3.32; (b) Z/D = 0.35, t∗ = 4.18; (c) Z/D = 0.35, t∗ = 4.24; (d ) Z/D = 0.35, t∗ = 4.32;
(e) Z/D = 3.15, t∗ = 6.85, ( f ) Z/D = 6, t∗ = 9.0.

These wave-like structures persist throughout the entrainment process. In figure 13(b)
the waves on the piston vortex can be seen passing through the primary ring. As
the piston vortex reaches the stagnation point of the main ring, these structures can
be seen wrapping rapidly around the outside of the primary vortex in a finger-like
fashion, figure 13(c). In figure 13(d ), the tips of the structures can be seen in the wake
of the ring as a series of jellyfish-like tentacles. To gain a further insight into the
nature of these structures, their time evolution and wavelength, laser cross-sections
were taken through planes perpendicular to the direction of propagation of the ring.
Results of flow visualization experiments using fluorescent dye are shown in figure 14
for a range of Z/D locations from the wall, where Z is the streamwise distance from
the orifice exit.

Figure 14(a) shows a cross-section of the piston vortex at the location Z/D = −1.64,
at t∗ = 3.32. This represents a cross-section inside the tube, before the piston vortex
has been ejected. Periodic structures can be seen distributed around the azimuth on
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Figure 15. Streamline pattern (a) and vorticity field (b) in the piston/cylinder corner region from
Allen & Chong (2000).

the piston vortex, indicating that the source of the instability is not related to the
presence of the primary ring. Figures 14(b) and 14(c) show cross-sections at a location
Z/D = 0.35, downstream of orifice. The cross-sections marked A and B in figure 2(c)
mark the approximate location where these cross-sections are taken relative to the
evolution of the piston vortex. In the images in figures 14(b) to 14(d ) the primary ring
has already passed through the laser sheet. The outer circle of dye represents the shear
layer that connects the primary ring to the orifice exit. Figure 14(b) shows the head of
the piston vortex as it starts to enter the illumination plane. Instabilities on the outer
edge of the piston vortex can be clearly seen in figure 14(c), as can the connecting
filaments running across the top of the piston vortex. Figure 14(d) shows the same
cross-section through the core of the piston vortex a short time later. The connecting
filaments are no longer visible, but instabilities on the outer edge of the piston vortex
can be clearly seen, along with some waviness on the inner turns of the piston vortex.
The visualizations indicate the presence of vorticity filaments aligned in a plane
perpendicular to the azimuthal direction. This represents a significant reorientation
of the vorticity on the piston vortex. The number of azimuthal structures is of order
twelve. Varying ReΓ did not appear to significantly alter the number of waves that
were forming but did effect how rapidly they developed. The instability does not seem
to have its origin on the piston vortex core. Figure 14(e) shows a cross-section through
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the vortex at a location Z/D = 3.15, at t∗ = 6.85. The cross-section shown as C in
figure 2(c) represents the approximate location of this point. This image shows the
‘bulge’ identified in earlier visualizations. The presence of streamwise piston-generated
fingers can be seen clustered in the stagnation point region. The stretching of two
of these structures around the outer periphery of the primary vortex is also evident.
Figure 14( f ) clearly shows the presence of these vortical fingers on the periphery of
the primary vortex.

7. Instability mechanism
It appears from the flow visualization images that the instability has its source on

the outer turn of the piston vortex. In order to construct a physical mechanism for
the generation of these structures one must consider how the piston vortex is being
generated. Figure 15 shows an example of the streamline pattern and vorticity field
in the region of the junction of the piston/cylinder wall from Allen & Chong (2000).
This is a cross-section of one side of the piston vortex relative to an observer moving
with the piston.

The process of formation of this structure is that when the piston is set in motion,
a boundary layer forms on the cylinder wall, shown with the velocity profile at point
A. The boundary layer is turned through 90◦ at the piston junction resulting in the
production of significant secondary vorticity on the piston face and resulting in a ‘wall
jet’ type velocity profile, shown at point B. The boundary layer then diverges rapidly
away from the piston surface, shown by the velocity profile at point C and rolls up
into a vortical structure, described in this paper as the ‘piston vortex’. The wall jet
nature of the velocity profile on the piston face indicates two regions of opposite
signed vorticity, and diverging flow at point C is subject to high curvature. These two
layers of opposite signed vorticity can be clearly seen in figure 15(b).

A wall jet subject to concave curvature is unstable due to the presence of centrifugal
forces, see Floryan & Saric (1984). It is in the inner flow, the section of the flow between
the wall and the point of maximum velocity, that the instability will first develop in a
wall jet subject to concave curvature. The control parameter for the stability of wall
jets subject to concave curvature is the Görtler number,

G0 = U∞δ/ν ×
√
δ/R,

where U∞ is the maximum velocity of the wall jet, R is the radius of curvature and
δ is the wall jet thickness. A criterion for the development of Görtler vortices in the
wall jet with concave curvature is G0 > 1.0. There is no critical wavenumber and
the characteristics of the vortices are determined by the disturbance growth process.
Experiments to determine the natural wavelength of Görtler vortices have been found
to be extremely sensitive to the properties of the apparatus and its flow field. Bippes
(1978) recorded the wavelength of the Görtler vortex as being that of the highest
amplification rate from linear theory, and once the wavelength is established it is
preserved downstream. Following Floryan (1987) we can consider the dimensionless
wavelength parameter

Λ = F1/3λ1/3ν−1(λ/R)1/2,

where F is the dimensional ‘flux of external momentum flux’, see Glauert (1956). Λ
is constant in the flow direction in order to follow a vortex of constant dimensional
wavelength λ. The curve of maximum growth from the linear stability analysis of
Floryan (1987) shows a variation of Λ from 48 to 85. From experiments with the
piston moving at 66 mm s−1 an estimate of U∞ ≈ 30 mm s−1 at a location 2.5 mm
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(a) (b)

Figure 16. (a) Schematic of instability development on the piston and (b) ingestion of the piston
vortex and instability during the steady translation phase.

above the piston face is obtained. An approximation for the wall jet thickness
is δ ≈ 8 mm and a radius of curvature of R ≈ 12 mm. This results in a Görtler
number, G0 = U∞δ/ν

√
δ/R, in excess of 100 and hence instabilities should be present.

Using a crude approximation for the velocity profile an estimate can be made of
F ≈ 1.63 × 105 mm5 s−3 which results in an approximation of λ ≈ 1.4 mm to 8 mm.
The wavelength of the structures in figure 14(a) is of order 8 mm and hence it would
appear that the instability is of centrifugal form.

Once the region of secondary vorticity plume and neighbouring piston vortex
has been perturbed it is anticipated that the nonlinear growth of the instability
follows a similar nonlinear growth mechanism to that outlined by Lasheras, Cho
& Maxworthy (1986). They presented a physical model for the generation of the
streamwise structures via nonlinear vortex stretching and tilting in the highly strained
braid region of a shear layer. A similar region of high shear exists on the outer
turn of the piston vortex, as illustrated in figure 15(b). This stretching process is
illustrated in figure 16(a). This instability is rolled/entrained into the piston vortex
as the structure develops in front of the advancing piston. When the piston vortex is
ejected and ingested into the primary ring the instabilities produce the fingers seen in
figure 13(c) and the filaments in figure 14(a). This development process is shown in
schematic form in figure 16(b), where the rolled-up vortex sheet that constitutes the
primary ring is shown as being connected to the piston vortex and the instability is
superimposed on the vortex sheet that is wrapped around the primary ring.

8. Transition to turbulence
If ReD exceeds 600, then as the vortex convects away from the tube, azimuthal

waves associated with the Tsai–Widnall instability begin to appear. This leads to an
eventual breakdown to turbulence. These waves develop because the strain field at a
perturbed point on the vortex ring is sufficient to overcome the self-induced azimuthal
core rotation. The most unstable waves grow at an angle of the order 45◦ to the axis
of symmetry, without precessing about the ring core. The image in figure 17(a) shows
the formation of these waves for ReΓ = 6530 at Z/D ∼ 8. Saffman (1978) noted that
although the mechanism for the generation of waves on the ring is an inviscid one,
the number of waves that appear on a vortex ring is a function of the shape of the
vorticity distribution within the ring, and hence a function of Reynolds number. The
calculations of Saffman (1978) agree well with the experiments of Liess & Didden
(1976), who found an experimental variation of the number of waves forming on
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Figure 17. Development of Tsai–Widnall instabilities ReΓ = 6530, t∗ = 17, S/D = 0, L/D = 2.
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Figure 18. Distance travelled from tube exit to turbulence breakdown for ReD = 3120.

the ring from 4 to 11 as ReD was varied from 2000 to 10 000 with L/D = 1.4. For
ReΓ = 6530 the number of waves is of the order of eight. This is in good agreement
with the results of Liess & Didden (1976). The image in figure 17(b), which shows
the classical Tsai–Widnall instability just prior to vortex breakdown to turbulence,
also shows evidence of filaments on the outer diameter. These structures had their
origin on the piston vortex. In the current experiments it was found that the number
of waves forming on the primary ring appears to be insensitive to whether the piston
vortex is ingested or not for a given ReΓ . The reason for the insensitivity is that the
perturbation introduced by the ingestion of the piston vortex is small, relative to the
change in strength required to produce a change in the wavenumber. The data of
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Liess & Didden (1976) show that, in the Reynolds number range we are working in,
a doubling of the vortex strength will increase the number of waves from 8 to 10.

The distance to transition to turbulence, as determined from flow visualization
experiments, is plotted in figure 18. The results show that there is an effect of the
piston vortex on the transition distance. The amplification rate of the Tsai–Widnall
instability appears greater when the piston vortex is ingested. For L/D > 1.5 the
distance travelled by the ring that has not ingested the piston vortex is of order 40%
greater than the case where it has. In terms of the time to transition there is as much
as a 50% difference as when the piston vortex is ingested the ring moves faster. The
linear, uniform core, inviscid analysis of Widnall, Bliss & Tsai (1974) suggests that
the amplification rate of the instability is proportional to the ring strength. Given
the fact that the overall differences in ring strengths are of order 5% and that the
ring diameters are virtually identical, the linear analysis does not provide a good
reason for the large difference in transition distance. The causes are more likely to lie
with the effect of the piston vortex in producing a non-uniform vorticity distribution
within the core which results in a strong nonlinear effect on the growth rate of the
Tsai–Widnall disturbance. Comparison with the data of Liess & Didden (1976) was
good for the case of L/D = 1.4 and the piston stopping inside the tube. The errors in
measurements of the distance to transition are of order ±4%.

9. Conclusions
The simple formation geometry of a piston finishing flush with a normal wall

to produce a vortex is shown to introduce an interesting flow complexity. While
eliminating the stopping vortex, a piston vortex is ejected and entrained into the
primary ring. L/D in this experiment was varied from 1 to 4, where L is the stroke of
the piston. In all the cases when the piston was stopped flush with the wall, ingestion
occurred. This ingestion appears to have a measurable effect on the speed of the
primary ring and measurements confirm that ingestion of the piston vortex provides an
added impulse to the ring. The absorption of the piston vortex has also been measured
in terms of its effect on the unsteady streamline field and vorticity distribution. The
piston vortex appears to be entrained toward the forward stagnation point on the
ring, where it is rapidly strained and convected around the periphery of the primary
vortex core. There is evidence of a centrifugal instability on the piston vortex which
has the effect of generating vorticity filaments in the plane perpendicular to the
azimuthal direction. These instabilities are entrained into the main ring and could be
the origin of the instabilities observed by Glezer (1988). It appears that the piston
vortex, although not affecting the basic mechanism for transition, has a secondary
effect on transition in that it reduces the distance the ring convects before transition
occurs because it amplifies the growth rate of the Tsai–Widnall instability. This would
also suggest that the transition map proposed by Glezer (1988) is geometry specific.

The authors would like to acknowledge the support of Professor A. J. Smits and
the NSF, grant number CTS-9706902.
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